Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model.
نویسندگان
چکیده
Partially isolated cortical islands prepared in vivo become epileptogenic within weeks of the injury. In this model of chronic epileptogenesis, recordings from cortical slices cut through the injured area and maintained in vitro often show evoked, long- and variable-latency multiphasic epileptiform field potentials that also can occur spontaneously. These events are initiated in layer V and are synchronous with polyphasic long-duration excitatory and inhibitory potentials (currents) in neurons that may last several hundred milliseconds. Stimuli that are significantly above threshold for triggering these epileptiform events evoke only a single large excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). We investigated the physiological basis of these events using simulations of a layer V network consisting of 500 compartmental model neurons, including 400 principal (excitatory) and 100 inhibitory cells. Epileptiform events occurred in response to a stimulus when sufficient N-methyl-D-aspartate (NMDA) conductance was activated by feedback excitatory activity among pyramidal cells. In control simulations, this activity was prevented by the rapid development of IPSPs. One manipulation that could give rise to epileptogenesis was an increase in the threshold of inhibitory interneurons. However, previous experimental data from layer V pyramidal neurons of these chronic epileptogenic lesions indicate: upregulation, rather than downregulation, of inhibition; alterations in the intrinsic properties of pyramidal cells that would tend to make them more excitable; and sprouting of their intracortical axons and increased numbers of presumed synaptic contacts, which would increase recurrent EPSPs from one cell onto another. Consistent with this, we found that increasing the excitability of pyramidal cells and the strength of NMDA conductances, in the face of either unaltered or increased inhibition, resulted in generation of epileptiform activity that had characteristics similar to those of the experimental data. Thus epileptogenesis such as occurs after chronic cortical injury can result from alterations of intrinsic membrane properties of pyramidal neurons together with enhanced NMDA synaptic conductances.
منابع مشابه
Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملHigh‐ and low‐conductance NMDA receptors are present in layer 4 spiny stellate and layer 2/3 pyramidal neurons of mouse barrel cortex
N-Methyl-D-aspartate (NMDA) receptors are ion channels activated by the neurotransmitter glutamate in the mammalian brain and are important in synaptic function and plasticity, but are also found in extrasynaptic locations and influence neuronal excitability. There are different NMDA receptor subtypes which differ in their single-channel conductance. Recently, synaptic plasticity has been studi...
متن کاملHomeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex.
Chronically isolated neocortex develops chronic hyperexcitability and focal epileptogenesis in a period of days to weeks. The mechanisms operating in this model of post-traumatic epileptogenesis are not well understood. We hypothesized that the spontaneous burst discharges recorded in chronically isolated neocortex result from homeostatic plasticity (a mechanism generally assumed to stabilize n...
متن کاملThe Functional Consequences of Cortical Circuit Abnormalities on Gamma Oscillations in Schizophrenia: Insights from Computational Modeling
Schizophrenia is characterized by cortical circuit abnormalities, which might be reflected in gamma-frequency (30-100 Hz) oscillations in the electroencephalogram. Here we used a computational model of cortical circuitry to examine the effects that neural circuit abnormalities might have on gamma generation and network excitability. The model network consisted of 1000 leaky integrate-and-fire n...
متن کاملMultiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex.
The mechanisms underlying the inhibitory effects of dopamine (DA) on layer V pyramidal neuron excitability in the prelimbic region of the rat medial prefrontal cortex were investigated. Under control conditions, DA depressed both action potential generation (driven by somatic current injection) and input resistance (R(N)). The presence of GABA(A) receptor antagonists blocked DA-induced depressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 82 4 شماره
صفحات -
تاریخ انتشار 1999